在△ABC中,BC=2,A=2派⼀3,向量AB点积向量AC最小值为

2025-06-26 21:37:34
推荐回答(1个)
回答1:

设∠ABC=x 0则AC=2sinx/sin(2π/3)=4√3/3sinx AB=2sin(π-2π/3-x)/sin(2π/3)=4√3/3sin(π/3-x)
向量AB点积向量AC
=16/3sinxsin(π/3-x)
=16/3sinx(√3/2cosx-1/2sinx)
=4√3/3sin(2x)-8/3sin^2(x)
=4√3/3sin(2x)-4/3[1+cos(2x)]
=8/3[√3/2sin(2x)-1/2cos(2x)]-4/3
=8/3sin(2x-π/6)-4/3
∵0∴向量AB点积向量AC的最小值为:8/3sin(-π/6)-4/3=-8/3