(1) 对称轴x=1, AB =4,则A(-1,0),B(3,0)y=a(x+1)(x-3)x=2, y=-3a= 3/2a= -1/2(2) C(0,3/2))CD与x轴平行,C关于x轴的对称点为C'(0,-3/2)C'D与x轴的交点即为E.用两点式得C'D的方程为y=(3/2)(x-1)与x轴交与E(1,0)CD=2, C'D=C'E+ED=CE+ED=sqrt(13)周长为2+sqrt(13)sqrt为平方根