由方程mx2-2(m+2)x+m+5=0没有实数根,得△1=4(m+2)2-4m(m+5)<0,解得m>4;关于x的方程(m-5)x2-2(m+2)x+m=0,当m-5=0,为一元一次方程,有一个根;当m-5≠0时,△2=4(m+2)2-4m(m-5)=4(9m+4),∵m>4,∴△2>0,所以方程有两个不相等的实数根.即关于x的方程(m-5)x2-2(m+2)x+m=0的实根的个数为1个或两个.故答案为D.