用勾股定理
证明:过A做高AP,交BC于P,因为AB=AC,所以BP=CP
AB^2=AP^2+BP^2,AD^2=AP^2+DP^2
所以AB^2-AD^2=BP^2-DP^2
=(BP+DP)(BP-DP)
=BD*(PC+DP)
=BD*DC
做BC中点为E
则AB2-AD2
=AB2-AE2-ED2
=BE2-ED2
=(BE+ED)×(BE-DE)
=BD×DC
过A做高AP,交BC于P,(因为AB=AC,D在BP或PC上和结论无关)
AP^2=AB^2-BP^2=AD^2-DP^2
AB^2-AD^2
=BP^2-DP^2
=(BP+DP)(BP-DP)
=BD*(PC+DP)
=BD*DC