这是算法的时空复杂度的表示。不仅仅用于表示时间复杂度,也用于表示空间复杂度。
O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。
比如时间复杂度为O(n),就代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法。
再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。比如冒泡排序,就是典型的O(n^2)的算法,对n个数排序,需要扫描n×n次。
再比如O(logn),当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。二分查找就是O(logn)的算法,每找一次排除一半的可能,256个数据中查找只要找8次就可以找到目标。
O(nlogn)同理,就是n乘以logn,当数据增大256倍时,耗时增大256*8=2048倍。这个复杂度高于线性低于平方。归并排序就是O(nlogn)的时间复杂度。
O(1)就是最低的时空复杂度了,也就是耗时/耗空间与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变。 哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话)
时间复杂度。
O() 表示 时间复杂度。
里面的数表示复杂的级数。
O(1) 表示时间复杂度为1
O(nlogn) 表示时间复杂度为 nlogn
这些都是算法的时间复杂度,是衡量算法好坏的标准之一。O(1)时间复杂度是常量,比如没有任何循环,语句的执行时间恒定常量。至于O(nlogn),是说算法的时间复杂度是nlogn的倍数,比如若一个排序算法的复杂度是O(nlogn),那么对于n个要排序的数,执行时间应该是nlogn的倍数。这些是和具体编程语言无关的,这些内容最好找本算法的书来看。
额这个好像是算法的时间复杂度吧。。。