解:S (n+1)=2S n + a1 ..........(1)
S n =2S (n-1) +a1............(2)
(1)-(2)得
S (n+1)-Sn=2[S n -S (n-1)]
a (n+1)=2 an
∴an是q=2的等比数列
an=a1X2^(n-1)
Sn=a1(1-2^n)/(1-2)=a1(2^n-1)
liman/Sn=lim[2^(n-1)/(2^n-1)]=1/2
原式子==>S(n+1)-Sn=Sn+a1==>a(n+1)=Sn+a1
==>a(n+1)=S(n+1)-a(n+1)+a1
==>2a(n+1)=S(n+1)+a1
两边同时除以 S(n+1)
得 : 2a(n+1)/S(n+1)=1+a1/S(n+1)==>a(n+1)/S(n+1)=1/2+a1/2S(n+1)
lim(an/Sn)=lim[a(n+1)/S(n+1)]=1/2
s(n+1)=2Sn+a1
s(n+1)=sn+an
所以,an=sn+a1
所以,极限为1