“对任意x∈[1,2],x2-a≥0”.则a≤x2,∵1≤x2≤4,∴a≤1,即命题p为真时:a≤1.若“存在x∈r,x2+2ax+2-a=0”,则△=4a2-4(2-a)≥0,即a2+a-2≥0,解得a≥1或a≤-2,即命题q为真时:a≥1或a≤-2.若“p∧q”是真命题,则p,q同时为真命题,即a≤1a≥1或a≤?2解得a=1或a≤-2.实数a取值范围是a=1或a≤-2.