证明:取AB中点E,连接DE∵AD=BD∴DE⊥AB,即∠AED=90º【等腰三角形三线合一】∵AB=2AC∴AE=AC又∵∠EAD=∠CAD【AD平分∠BAC】AD=AD∴⊿AED≌⊿ACD(SAS)∴∠C=∠AED=90º∴CD⊥AC