c=√(a^2+b^2),a>0,b>0 c/(a+b)=√[(a^2+b^2)/(a^2+b^2+2ab)]=√[1-2ab/(a^2+b^+2ab)] ∵a^2+b^2>=2ab(a=b时取等) ∴a^2+b^2+2ab>=4ab,0<2ab/(a^2+b^2+2ab)<=1/2 ∴1/2<=1-2ab/(a^2+b^2+2ab)<1 ∴√2/2<=√[1-2ab/(a^2+b^+2ab)]<1 即√2/2<=c/(a+b)<1(a=b时取等)