设x,y,z都是正数,求证2⼀(x+y)+2⼀(y+z)+2⼀(z+x)>=9⼀(x+y+z)

2025-06-26 01:06:56
推荐回答(1个)
回答1:

证法一:
由柯西不等式,有:
[1/(x+y)+1/(y+z)+1/(x+z)][(x+y)+(y+z)+(x+z)]≧(1+1+1)^2
∴2(x+y+z)[1/(x+y)+1/(y+z)+1/(x+z)]≧9,
∴2/(x+y)+2/(y+z)+2/(x+z)≧9/(x+y+z)。

证法二:
不失一般性,令x≦y≦z,则:1/(y+z)≦1/(x+z)≦1/(x+y)。
由排序不等式:顺序和大于乱序和。有:
x/(y+z)+y/(x+z)+z/(x+y)≧x/(x+z)+y/(x+y)+z/(y+z),
x/(y+z)+y/(x+z)+z/(x+y)≧z/(x+z)+x/(x+y)+y/(y+z),
上述两式相加,得:
2[x/(y+z)+y/(x+z)+z/(x+y)]≧3,
∴x/(y+z)+y/(x+z)+z/(x+y)≧3/2,
∴[1+x/(y+z)]+[1+y/(x+z)]+[1+z/(x+y)]≧3/2+3=9/2,
∴(x+y+z)/(y+z)+(x+y+z)/(x+z)+(x+y+z)/(x+y)≧9/2,
∴2/(x+y)+2/(y+z)+2/(x+z)≧9/(x+y+z)。