过点P(4,2)作圆x2+y2=4的两条切线,切点分别为A、B,O为坐标原点,则△PAB的外接圆方程是(  )A.

2025-06-23 22:16:27
推荐回答(1个)
回答1:

由圆x2+y2=4,得到圆心O坐标为(0,0),
∴△ABP的外接圆为四边形OAPB的外接圆,又P(4,2),
∴外接圆的直径为|OP|=

42+22
=2
5
,半径为
5

外接圆的圆心为线段OP的中点是(
4+0
2
2+0
2
),即(2,1),
则△ABP的外接圆方程是(x-2)2+(y-1)2=5.
故选:A.