x^2-2xy+y^2-x+y-1=0(x-y)^2-(x-y)-1=0令a=x-y则a^2-a-1=0a=(1±√5)/2所以x-y=(1-√5)/2,x-y=(1+√5)/2
x^2-2xy+y^2-x+y-1=(x-y)²-(x-y)-1=0,设(x-y)为z,则z²-z-1=0解得:z1=½(1+√5),z2=½(1-√5)即:x-y=½(1+√5),或x-y=½(1-√5)