f(x)=ax^3+bx^2+cx(a≠0)是定义在R上的奇函数,∴b=0,f'(x)=3ax^2+c,x=-1时,函数取极值1,∴f'(-1)=3a+c=0,f(-1)=-a-c=1.解得a=1/2,c=-3/2.f(x)=(1/2)x^3-(3/2)x.f'(x)=(3/2)(x+1)(x-1),-1∴x1,x2∈[-1,1]时|f(x1)-f(x2)|<=f(-1)-f(1)=1-(-1)=2<=s,∴s的最小值=2.