因正数组成的数列{an}为等比数列,故an=a1q^(n-1),
故lgan=lg[a1q^(n-1)]=lga1+(n-1)lgq,记bn=lgan
则bn-b(n-1)=lga1+(n-1)lgq-{lga1+(n-2)lgq}=lgq
即{bn}是以lgq为公差的等差数列,所以得证
证明:设正数数列{an}的公比为q,则q>0,则a(n+1)/an=1/q,(其中q为常数)
那么1ga(n+1)-lgan=lg(a(n+1)/an)=lg(1/q)为常数,
所以数列{1gan}一定为等差数列.
等比数列an=a1q^(n-1) 1gan=1ga1q^(n-1) =1ga1+1gq^(n-1)=1ga1+(n-1)/Log10(换底q)
1gan-1gan-1=1/Log10(常数)数列{1gan}一定为等差数列