已知sinαcosα=1⼀4,且π⼀4<α<π⼀2,求tanα

2025-06-27 11:34:46
推荐回答(3个)
回答1:

sinαcosα=1/4
2sinacosa=1/2
sin2a=1/2
因为
π/4<α<π/2
π/2<2a<π
cos2a=-√3/2
tan2a=sin2a/cos2a=-√3/3=2tana/(1-tan^2a)
-(1-tan^2a)=2√3tana
tan^2a-2√3tana-1=0
tan^2a-2√3tana+3=4
(tana-√3)^2=4
tana-√3=±2
tana=±2+√3
因为π/4<α<π/2
则tana>0
所以tana=2+√3

回答2:

sin2α=2sinα=1/2 cos2α=-√3/2 因为π/2<2α<π
所以 tan2α=-3/√3
tan2α=2tana/(1-tan^2a)
所以tana=2+√3

回答3:

2+根号3