(x^2+1)^3-27y^3+18(x^2+1)y+8用轮换式因式分解,求过程

2025-06-29 09:04:36
推荐回答(1个)
回答1:

设m=x^2+1,n=3y,那么
(x²+1)³-27y³+18(x²+1)y+8
=m^3-n^3+6mn+8
=[(m-n)^3+8]+[3mn(m-n)+6mn]
=(m-n+2)[(m-n)^2-2(m-n)+4]+3mn(m-n+2)
=(m-n+2)(m^2+n^2+mn-2m+2n+4)
=[(x^2+1)-3y+2][(x^2+1)^2+(3y)^2+(x^2+1)(3y)-2(x^2+1)+6y+4]
=(x^2-3y+3)(x^4+3x^2y+9y^2+9y+3)
望采纳