完备空间的相关概念

2025-06-27 12:00:23
推荐回答(1个)
回答1:

完备与闭: 前面讲,完备类似于闭,那么,“完备”与“闭”的区别在何处呢?它们的区别在于,完备是空间或集合的性质,而闭是子集的性质。通常我们说某个集合是闭集或开集,实际上是指该集合是R或某个拓扑空间的闭子集或开子集。例如,开区间(0, 1)是全集(0, 1)或的闭子集,因为(0, 1)在这两个全集中的导集是其自身。但(0, 1)是R的开子集。闭子集可以用收敛序列定义,因为收敛序列的极限点总是在全集中的,极限点在子集中与否决定该子集是否为闭子集。与此相对,完备性的定义中没有全集的概念,这也是为什么在其定义中必须用柯西序列而不能用收敛序列,因为在收敛序列的定义中必有极限点,若该极限点不在度量空间中,则收敛序列中的点到该极限点距离是未定义的。