延长AB至D点,使AD=15,即AD=(5/2)AB; M是AC中点,向量AO=[(2/5)x]*[(5/2)向量AB]+[(2y]*[(1/2)向量AC]2x+10y=5,两边同除以5得:(2/5)x+2y=1所以,D,O,M三点共线;OM⊥AC向量AD,AC夹角的余弦cos=5/15=1/3向量BC=向量AC-向量AB|向量BC|^2=(AC)^2+(AB)^2-2|AC||AB|(1/3)=6^2+10^2-2*6*10*(1/3)=96BC=4√6