对于有些数开平方很容易计算,比如√4=2,√81=9,√144=12,对于有些数开平方不容易计算,比如√13,√5,对于这些数可以用计算器计算
勾股定理:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。例:a的边长为3,b的边长为4,则我们可以利用勾股定理计算出c的边长。由勾股定理得,a²+b²=c²→3²+4²=c²,即:9+16=25=c²,c=5。所以我们可以利用勾股定理计算出c的边长为5。
勾股定理怎么算
勾股定理又称商高定理、毕达哥拉斯定理、毕氏定理、百牛定理,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。勾股定理是人类早期发现并证明的重要数学定理之一。