解:延长AD到E,使DE=AD,连接BE,∵D为BC的中点,∴DC=BD,∵在△ADC与△EDB中, AD=ED ∠ADC=∠EDB DC=BD ,∴△ADC≌△EDB(SAS),∴BE=AC=3,∠CAD=∠E,又∵AE=2AD=4,AB=5,∴AB2=AE2+BE2,∴∠CAD=∠E=90°,则S△ABC=S△ABD+S△ADC= 1 2 AD?BE+ 1 2 AD?AC= 1 2 ×2×3+ 1 2 ×2×3=6.故答案为:6.