tan(α+β+π/5-π5)=[tan(α+π/5)+tan(β-π/5)]/[1-tan(α+π/5)tan(β-π/5)]=2/5.
=[tan( α+π/6)+(1/4)]/[1-tan(α+π/5)(1/4)=2/5.
即,[1-(1/4)tan(α+π/5)]*(2/5)=tan(α+π/5)+1/4.
化简后,得:tαan(α+π/5)=3/22.
∴tan(α+π/5)=3/22.
你好!tan(α+β+α-β)=(tan(α+β)+tan(α-β))/1-tan(α+β)tan(α-β) 左边=tan2a=3/22 tan2a=2tana/1-tan^2a 可解出tan a tan(α+π/5)这里就展开,再把tana 代入就行了