解答:证明:∵在?ABCD中,BC=AD=10,且M为BC边中点,∴BM= 1 2 BC=5.∵在?ABCD中,BC∥AD,∴∠MBE=∠ADE,∠EMB=∠EAD,∴△BEM∽△DEA,∴ ME AE = BE DE = BM AD = 5 10 = 1 2 ,又∵AM=9,BD=12,∴ME=3,BE=4,∵在△BME中,ME2+BE2=32+42=25,BM2=52=25,∴ME2+BE2=BM2,∴BE⊥ME,即:AM⊥BD.