设直线L1
x=y/2=z/3上的动点Q为(t,2t,3t),
则向量PQ=(t-1,2t-1,3t-1),
直线PQ的方程是(x-1)/(t-1)=(y-1)/(2t-1)=(z-1)/(3t-1),①
它与L2
(x-2)/2=y-2=(z-3)/4②有公共点,
由②,x=2y-2,z=4y-5,都代入①,得
(2y-3)/(t-1)=(y-1)/(2t-1)=(4y-6)/(3t-1),
∴(2y-3)(2t-1)=(y-1)(t-1),(y-1)(3t-1)=(4y-6)(2t-1),
∴4ty-2y-6t+3=ty-y-t+1,3ty-y-3t+1=8ty-4y-12t+6,
整理得3ty-y-5t+2=0,③5ty-3y-9t+5=0,④
③*5-④*3,得4y+2t-5=0,y=(5-2t)/4,
代入③*4,得(3t-1)(5-2t)+4(-5t+2)=0,
-6t^2-3t+3=0,
解得t=-1,或1/2(舍).
代入①,得所求方程为(x-1)/(-2)=(y-1)/(-3)=(z-1)/(-4),
即(x-1)/2=(y-1)/3=(z-1)/4.
直线
l1
方向向量为
v1=(3,2,6),
直线
l2
方程化为
(x-1)/(-2)=y=(z+2)/(-1)
,因此方向向量
v2=(-2,1,-1),
因此平面法向量
n=v1×v2=(-8,-9,7),
由于平面过点
(2,-1,3),
所以所求平面方程为
-8(x-2)-9(y+1)+7(z-3)=0
,
化简得
8x+9y-7z+14=0
。
(顺便指出,直线
l1、l2
是异面直线,所求平面是过
l1
且与
l2
平行的平面)。