半径为R的球O中有一内接圆柱。当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是________?

2025-06-27 22:10:45
推荐回答(4个)
回答1:

设圆柱的上底面半径为r,球的半径与上底面夹角为α,则r=Rcosα,圆柱的高为2Rsinα,圆柱的侧面积为:2πR2sin2α,当且仅当α=

π4

时,sin2α=1,圆柱的侧面积最大,圆柱的侧面积为:2πR2,球的表面积为:4πR2,球的表面积与该圆柱的侧面积之差是:2πR2
故答案为:2πR2

回答2:

设圆柱的上底面半径为r,球的半径与上底面夹角为α,则r=4cosα,圆柱的高为8sinα,圆柱的侧面积为:32πsin2α,当且仅当α=π/ 4 时,sin2α=1,圆柱的侧面积最大,圆柱的侧面积为:32π,球的表面积为:64π,球的表面积与该圆柱的侧面积之差是:32π.

回答3:

3.14956

回答4:

4派r方(1+派方-派)/(1+派方)
不知道对不对…