若cos2a/sin((a-(π/4))=-(√2)/2,则cosa+sina的值为
解:由cos2α/sin(α-π/4)=-(√2)/2,
且
cos2α=cos�0�5α-sin�0�5α
sin(α-π/4)=(√2)/2*(sinα-cosα)
则:
cos2α/sin(α-π/4)=cos�0�5α-sin�0�5α/((√2)/2*(sinα-cosα))=-(√2)/2
等式左边同时约去sinα-cosα,可得:
√2(sinα+cosα)=-(√2)/2
则有:sinα+cosα=-1/2