下面是有关三角形内外角平分线的探究,阅读后按要求作答:?探究1:如图(1),在△ABC中,O是∠ABC与∠AC

2025-06-25 06:26:42
推荐回答(1个)
回答1:

(1)探究2结论:∠BOC=
1
2
∠A,
理由如下:
∵BO和CO分别是∠ABC和∠ACD的角平分线,
∴∠1=
1
2
∠ABC,∠2=
1
2
∠ACD,
又∵∠ACD是△ABC的一外角,
∴∠ACD=∠A+∠ABC,
∴∠2=
1
2
(∠A+∠ABC)=
1
2
∠A+∠1,
∵∠2是△BOC的一外角,
∴∠BOC=∠2-∠1=
1
2
∠A+∠1-∠1=
1
2
∠A;

(2)探究3:∠OBC=
1
2
(∠A+∠ACB),∠OCB=
1
2
(∠A+∠ABC),
∠BOC=180°-∠0BC-∠OCB,
=180°-
1
2
(∠A+∠ACB)-
1
2
(∠A+∠ABC),
=180°-
1
2
∠A-
1
2
(∠A+∠ABC+∠ACB),
结论∠BOC=90°-
1
2
∠A.