已知:四边形ABCD中,AD∥BC,AB=AD=DC,∠BAD=∠ADC,点E在CD边上运动(点E与点C、D两点不重合),△AEP

2025-06-26 05:45:39
推荐回答(1个)
回答1:

(1)如图3,延长FB到N,使BN=ED,连接AN、EF,
∵∠AEP=90°,∠P=30°,
∴∠PAE=60°,
∵AB=AD,AD∥BC,
∴∠BAD=∠ABN=∠D,
∵在△ADE和△ABN中,

AB=AD
∠ABN=∠ADE
BN=DE

∴△ADE≌△ABN(SAS),
∴AN=AE,∠DAE=∠BAN,
∵∠BAD=120°,∠PAE=60°,
∴∠NAF=∠EAF,
∵在△ANF和△AEF中,
AF=AF
∠NAF=∠EAF
AN=AE

∴△ANF≌△AEF(SAS),
∴NF=EF,∠AFN=∠AFE,
∵ME∥BC,
∴∠AFB=∠EMF=∠AFE,
∴ME=EF,
∴BF+DE=EM,

(2)如图4,延长CB至N点,使BN=DE,
∵AB=AD=DC,∠BAD=∠ADC=90°,
∴四边形ABCD为正方形,
∵在△ABN和△ADE中,
AB=AD
∠ABN=∠ADE
BN=DE

∴△ABN≌△ADE(SAS),
∴∠EAD=∠NAB,NF=DE+BF,AN=AE,
∵∠P=30°,∠AEP=90°,
∴∠PAE=60°,
AE
PE
3
3

∴∠EAD+∠BAF=30°,
∴∠BAN+∠BAF=30°,
∠NAP=∠P,
∵ME∥BC,
∴∠NFA=∠FME,
∴△ANF∽△PEM,