如图,在平行四边形ABCD中,AB⊥AC,AB=1,BC=根号5.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分

2025-06-28 09:01:37
推荐回答(4个)
回答1:

1 旋转90度 EF垂直于AC AB垂直于AC AB//EF 且由题意AE//BF 所以四边形ABEF为平行四边行

2. 旋转过程中设E F 为任意点,
由题意AF//CE
内错角EFA=FEC CAF=ACE AO=CO
可证明三角形AOF全等于 三角形COE
由此证明 OF=OE AF=EC

3 由勾股定理AC的平方=BC的平方-AB的平方
5-1=4
AC=2
AO=1/2 AC=1
AB=AO
又因为角BAC=90度 角BOA=45度
要使的四边形BEDF为菱形
有BO=OD OF=OE(已证)
只需要EF垂直于BD
即角FOB=90度
所以角FOA=角FOB-角BOA=90-45=45度
所以AC应顺时针旋转45度

回答2:

解:(1)当∠AOF=90°时,AB∥EF,
又∵AF∥BE,
∴四边形ABEF为平行四边形;

(2)AF=EC;(2分)
理由:∵四边形ABCD是平行四边形,
∴OA=OC,∠ECO=∠FAO;
又∵∠AOF=∠EOC,
∴△AOF≌△EOC,故AF=EC.(4分)

(3)四边形BEDF可能是菱形.(5分)
理由:∵△AOF≌△COE,
∴OE=OF,
又∵OB=OD,
∴四边形BEDF是平行四边形,(6分)
∴只要有EF⊥BD,就能使平行四边形BEDF是菱形.
∵AB⊥AC,AB=1,BC=√5
∴AC=
BC2-AB2
=2,
又∵OA=OC,
∴AO=1,
∵AB⊥AC,AB=1,
∴△AOB是等腰直角三角形,
∴∠AOB=45°,
∴AC绕O顺时针旋转的度数为45°

回答3:

1 旋转90度 EF垂直于AC AB垂直于AC AB//EF 且由题意AE//BF 所以四边形ABEF为平行四边行

2. 旋转过程中设E F 为任意点,
由题意AF//CE
内错角EFA=FEC CAF=ACE AO=CO
可证明三角形AOF全等于 三角形COE
由此证明 OF=OE AF=EC

3 由勾股定理AC的平方=BC的平方-AB的平方
5-1=4
AC=2
AO=1/2 AC=1
AB=AO
又因为角BAC=90度 角BOA=45度
要使的四边形BEDF为菱形
有BO=OD OF=OE(已证)
只需要EF垂直于BD
即角FOB=90度
所以角FOA=角FOB-角BOA=90-45=45度
所以AC应顺时针旋转45度

回答4:

1)证明:∵当旋转角为90°时,
∴EF⊥AC于O
∵AB垂直AC
∴AB‖EF
∵AD‖BC
,∴ABEF是平行四边形

(2)证明:∵四边形ABCD为平行四边形,
∴AO=CO,∠FAO=∠ECO,∠AOF=∠COE.
∴△AOF≌△COE.
∴AF=EC.

(3)四边形BEDF可以是菱形
理由:连接BF,DE
由(2)知△AOF≌△COE,得OE=OF,
∴EF与BD互相平分.
∴当EF⊥BD时,四边形BEDF为菱形
在Rt△ABC中,AC= =2,
∴OA=1=AB,又AB⊥AC,
∴∠AOB=45°
∴∠AOF=45°,
∴AC绕点O顺时针旋转45°时,四边形BEDF为菱形.