解:
1/(x-1)+1/(x-1)(x-2)+1/(x+2)(x+3)
=1/(x-1)+1/(x-2)-1/(x-1)+1/(x+2)-1/(x+3)
=1/(x-2)+1/(x+2)-1/(x-3)
=4/(x-2)(x+2)-1/(x-3)
=4[(x-3)-(x-2)(x-3)]/[(x-2)(x+2)(x+3)]
=4(x-3-x^2+5x-6)/[(x^2-4)(x+3)]
=4(-x^2+6x-9)/(x^3+3x^2-4x-12)
=-(4x^2-24x+36)/(x^3+3x^2-4x-12)