已知函数f(x)=cos^4x-2sinxcosx-sin^4x,求f(x)的最小正周期,求f(x)的单调区间,急!步骤!

2025-06-25 15:02:13
推荐回答(3个)
回答1:

f(x)=cos^4(x)-sin^4(x)-2sinxcosx

=(cos^2(x)-sin^2(x))(cos^2(x)+sin^2(x))-sin(2x)
因为cos^2(x)+sin^2(x)=1,cos^2(x)-sin^2(x)=cos(2x),则上式可化为
f(x)=cos(2x)-sin(2x)

=sqrt(2)*(
cos(pi/4)cos(2x)-sin(pi/4)sin(2x)
)

=sqrt(2)*cos(2x+pi/4)
注:上式sqrt(2)是根号2的意思
由f(x)=sqrt(2)*cos(2x+pi/4)可知其最小正周期为pi,
单调增区间:3/8*pi+k*pi到7/8*pi+k*pi
单调减区间:-1/8*pi+k*pi到3/8*pi+k*pi
以上k均为整数

回答2:

f(x)=cos^4x-2sinxcosx-sin^4x
=(cos^2x+sin^2x)(cos^2x-sin^2x)-sin2x
=1*cos2x-sin2x
=cos2x-sin2x
=cos(2x+π/4)
则f(x)的最小正周期
T=2π/2=π
单调区间
当2kπ<=2x+π/4<=2kπ+π,函数单减,即
x∈[kπ-π/8,kπ+3π/8]
当2kπ+π<=2x+π/4<=2kπ+2π,函数单增,即
x∈[kπ+3π/8,kπ+7π/8]

回答3:

解:f(x)=(cos²x+sin²x)(cos²x-sin²x)-sin2x=cos2x-sin2x=-(√2)sin[2x-(π/4).即f(x)=-(√2)sin[2x-(π/4)].∴(1)T=π。(2)2kπ-(π/2)≤2x-(π/4)≤2kπ+(π/2).===>kπ-(π/8)≤x≤kπ+(3π/8).∴x∈[kπ-(π/8),kπ+(3π/8)]时,该函数递减。在其它区间上递增。