由y=sin[f(x2)],设u=x2,v=f(u)则y=sinv
∴
=dy dx
?dy dv
?dv du
=cosv?f′(u)?2x=2xcosvf′(u)du dx
∴
=
d2y dx2
[2xcosvf′(u)]=2cosvf′(u)+2xd dx
d[cosvf′(u)] dx
=2cosvf′(u)+2x[?sinv
+cosvf″(u)dv dx
]du dx
=2cosvf'(u)+2x[-2xsinvf'(u)+2xcosvf''(u)]
=2(cosv-2x2sinv)f'(u)+4x2cosvf''(u)
=2(cosv-2x2sinv)f'(x2)+4x2cosvf''(x2)
本题为1993考研数学二真题