a-b=(1,√3)-(-2,0)=(3,√3) 则:|a-b|=2√3 |a|=2 设:a-b与a的夹角为w,则: (a-b)*a=(3,√3)*(1,√3)=6 得: cosw=[(a-b)*a]/[|a-b|×|a|]=6/[4√3]=√3/2 则:w=30°