(1)a=1,b=-2,c=-9,
△=b2-4ac=4+36=40>0,有两个不相等的实数根,
x=
=?b±
b2?4ac
2a
=1±2±
40
2
,
10
x1=1+
,x2=1-
10
;
10
(2)原方程变形为:(5x-3)2-2(5x-3)=0,
(5x-3)(5x-3-2)=0,
5x-3=0,5x-5=0,
x1=
,x2=1.3 5
解: (1)x²-2x-9=0
x=[2±√(4+36)]/2
=[2±√40]/2
=1±√10
x1 =1+√10 x2 =1-√10
(2)(5x-3)²+2(3-5x)=0
(5x-3)[(5x-3)-2]=0
(5x-3)(5x-5)=0
(5x-3)=0 x1=3/5
(5x-5)=0 x2=1