解:由f(x)=x3+ax2+(a-2)x,得,f′(x)=3x2+2ax+(a-2),又∵f'(x)是偶函数,∴2a=0,即a=0∴f'(x)=3x2-2,∴曲线y=f(x)在原点处的切线斜率为-2,曲线y=f(x)在原点处的切线方程为y=-2x故选B