在△abc中,b=√3,∠b=60°,求a+2c的最大值

2025-06-26 17:13:29
推荐回答(1个)
回答1:

b=√3, B=60°
a = bsinA/sinB = √3sinA/sin60° = 2sinA
c= bsinC/sinB = 2sinC
/
S
= a+2c
=2sinA + 4sinC
=2sin(120°-C) + 4sinC
=2[ (√3/2)cosC + (1/2)sinC ] +4sinC
=√3cosC + 5sinC
=√28[ (√3/√28)cosC + (3/√28)sinC ]
=√28.sin(φ+C)
where sinφ = √3/√28, cosφ=(3/√28)
max S= max a+2c =√28=2√7