(I)设等差数列{an}的公差为d∵a7=4,a19=2a9,∴ a1+6d=4 a1+18d=2(a1+8d) 解得,a1=1,d= 1 2 ∴an=1+ 1 2 (n?1)= 1+n 2 (II)∵bn= 1 nan = 2 n(n+1) = 2 n ? 2 n+1 ∴sn=2(1? 1 2 + 1 2 ? 1 3 +…+ 1 n ? 1 n+1 )=2(1? 1 n+1 )= 2n n+1