关于高等数学中的函数的无界的一个问题

2025-06-28 10:49:35
推荐回答(4个)
回答1:

因为y=1/x 在x趋于0的时候,右极限为 +无穷,左极限为 -无穷,就是因为在0这一点函数值发散,所以该函数无界,所以任何包含0的区间内该函数都是无界的,(0,1)当然也不例外
从另一个角度说在子区间(0,1)上都无界,在整个定义域当然也是无界的,这个不矛盾
至于为什么那个视频教程只强调在(0,1)上无界,这个可能跟你的题有关,也许解题过程只涉及(0,1)区间就足矣

看了你新加的图,没什么要说的。该说的昨天都说了,只是个例子而已,只要证到(0,1)上无界,那么在整个定义域区间当然也是无界的,你没必要纠结于这个简单地问题。只是个让你们看起来容易理解的例子而已,可能老师是想强调0这一点,而希望你们不被(0,1)以外的点干扰。

回答2:

函数的有界无界是以值域来看的,与定义域无关。

回答3:

实际上1/x就是0点的领域无界。
不要不假思索的学习。自己稍微算一下就知道。除0点领域外,这个函数都是有界的,1换成其他的值又有什么区别呢?

回答4:

0附近一定是无界的 至于1是不是有什么具体要求?