首先要移项 ,即;(n+2)an+1=(n+1)an
得;an+1/an=n+1/n+2
要用累乘。
an+1/an乘以an/an-1...一直乘到a2/a1 =n+1/n+2乘以n/n+1.......一直乘到2/3
化简
=an+1/a1=2/n=2
又因为a1=2
所以an+1=4/n+2
则an=4/n+1
(n+2)a(n+1)-(n+1)an=0
(n+2)a(n+1)=(n+1)an
a(n+1)/an=(n+1)/(n+2)
an/a(n-1)=n/(n+1)
...
a2/a1=2/3
相乘
a(n+1)/a1=2/(n+2)
a(n+1)=2a1/(n+2)=4/(n+2)
an=4/(n+1)