基本不等式有两种:基本不等式和推广的基本不等式(均值不等式)基本不等式是主要应用于求某些函数的最大(小)值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。(1)基本不等式两个正实数的算术平均数大于或等于它们的几何平均数。 (2)推广的基本不等式(均值不等式) 时不等式两边相等。 不等式运用示例 某学校为了美化校园,要建造一个底面为正方形,体积为32的柱形露天喷水池,问怎样才能使得用来砌喷水池底部和四壁的镶面材料花费最少? 答:设底面正方形边长为x,则水池高为32/x^2 y=x^2+4x*32/x^2=x^2+128/x=x^2+64/x+64/x ≥3(1*64*64)^(1/3)=48 所以当x^2=64/x,x=4时花费最少。上面解法使用了均值不等式 时不等式两边相等。
设以下各量都为正,则
1)(a+b)/2>√(ab),(a+b+c)/3>³√(abc),......
2)[(a+b+c+......+l)/n]^r>(a^r+b^r+c^r+......+l^r)/n(r>1)
[(a+b+c+......+l)/n]^r<(a^r+b^r+c^r+......+l^r)/n(r<1)