令a=1+e^(-x)
x=-ln(a-1)
dx=-da/(a-1)
所以原式=∫[-da/(a-1)]/a
=∫-1/a(a-1)da
=∫[1/a-1/(a-1)]da
=lna-ln(a-1)+C
=ln[1+e^(-x)]-lne^(-x)+C
=ln[1+e^(-x)]+x+C
令t=e^(-x),则x=-ln(t)。
原式=积分 -(1/(t(t+1))dt=ln((1+t)-ln(t)+C==ln(1+e^(-x))+x+C
∫1/(1+e^(-x))dx
=∫(1+e^(-x)-e^(-x))/(1+e^(-x))dx
=∫[1-(e^(-x)/(1+e^(-x))]dx
=∫1dx-[-∫1/(1+e^(-x))d(1+e^(-x))]
=x+ln(1+e^(-x))+c