x+y最小值为5+2根号6.,详细过程见下图。
满意请采纳,有问题可以追问
看图
解:
2/x+ 3/y=2
y=3x/[2(x-1)]
y>0,3x/[2(x-1)]>0
x<0或x>1
又x>0,因此x>1
(1)
xy=x·3x/[2(x-1)]
=3x²/[2(x-1)]
=(3x²-3x+3x-3+3)/[2(x-1)]
=(3/2)[(x-1)+ 1/(x-1) +2]
x>1,x-1>0,由基本不等式得:
(x-1)+ 1/(x-1)≥2,当且仅当x=2时取等号
(3/2)[(x-1)+ 1/(x-1) +2]≥(3/2)(2+2)=6
xy的最小值是6
(2)
x+y=x+ 3x/[2(x-1)]
=(x-1) + 3/[2(x-1)] +5/2
由基本不等式得:
(x-1) +3/[2(x-1)]≥2√[(x-1)·3/(2(x-1))]=√6
当且仅当x=(2+√6)/2时取等号
(x-1) + 3/[2(x-1)] +5/2≥(5+2√6)/2
x+y的最小值为(5+2√6)/2