数列{an}的前n项和Sn=n2+n,设数列{bn},bn=2an.(1)求数列{bn}的前n项和Tn;(2)求Rn=a1b1+a2b2+…+

2025-06-28 15:00:39
推荐回答(1个)
回答1:

(1)∵n=1时,a1=S1=2,
n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n,
∴an=2n,∴bn=22n=4n
Tn=b1+b2+…+bn=41+42+…+4n
=

4(1?4n)
1?4
=
4
3
(4n?1)

(2)Rn=a1b1+a2b2+…+anbn=2×41+4×42+…+2n×4n…①
两边同乘以4得:4Rn=2×42+4×43+…+2n×4n+1…②
①-②得:-3Rn=2×41+2×42+2×43+…+2×4n-2n×4n+1
=2×
4(1?4n)
1?4
-2n×4n+1=(
8
3
-8n)4n-
8
3

∴Rn=(
8
3
n-
8
9
)4n+
8
9