已知函数f(x)=ln(x+a)-x,(1)试确定f(x)的单调性;(2)数列{a n }满足a n+1 a n -2a n+1 +1=0,

2025-06-28 03:49:44
推荐回答(1个)
回答1:

(1)∵ f (x)=
1
x+a
-1

1
x+a
-1>0
,得-a<x≤1-a,
x+a>0
1
x+a
-1<0
,得x>1-a,
故f(x)在(-a,1-a]上是单调增函数,在[1-a,+∞)上是单调减函数.
(2)①∵a n a n+1 -2a n+1 +1=0,
a n+1 =
1
2- a n
,1- a n+1 =1-
1
2- a n
=
1- a n
2- a n

1
1- a n+1
=
2- a n
1- a n
=
1
1- a n
 +1( a 1 ≠1)

{
1
1- a n
}
是公差为1的等差数列,且首项为
1
1- a 1
=2,
1
1- a n
=n+1,
a n =1-
1
n+1

②由(1)知,当a=1时,f(x)=ln(1+x)-x在[0,+∞)是单调减函数,又f(0)=0,
∴x>0,f(x)<f(0)=0,即ln(1+x)<x.
∴对于k∈N +
1
k+1
>ln(1+
1
k+1
)
=ln(k+2)-ln(k+1),
a k =1-
1
k+1
<1-(ln(k+2)-ln(k+1))

∴S n =a 1 +a 2 +…+a n
<1-(ln3-ln2)+1-(ln4-ln3)+…+(ln(n+2)-ln(n+1))
=n+ln2-ln(n+2)
<n+1-ln(n+2).