lim[(ln(1⼀x))^x] 在x趋向于0^+(从右边趋向0) 时的极限怎么求?

2025-06-29 08:42:10
推荐回答(1个)
回答1:

lim[(ln(1/x))^x]

=lim[(1+ln(1/x)-1)^x]

=lim[(1+ln(1/ex))^x]

=lim{[1+ln(1/ex)]^[1/ln(1/ex) *ln(1/ex)*x]}

=e^[lim(x*ln(1/ex))]

=e^[-lim(x*(1+lnx))]

=e^[-limx-lim(xlnx)]

=e^0

=1