已知x>=0,y>=0,且x+(1/2)y=1,求x²+y²的最大值,最小值 由x+(1/2)y=1,得y=2(1-x); 故u=x²+y²=x²+4(x-1)²=5x²-8x+4=5[(x²-8x/5)]+4 =5[(x-4/5)²-16/25]+4=5(x-4/5)²-16/5+4=5(x-4/5)²+4/5≧4/5 即当x=4/5时u=x²+y²获得最小值4/5 ;无最大值.