如图所示:
(1) dy/dx = e^y-1, dy/(e^y-1) = dx, de^y/[e^y(e^y-1)] = dx,
[1/(e^y-1)-1/e^y]de^y = dx, ln|e^y-1| - ln|e^y| + lnC = x,
ln|e^y-1| + lnC = x+y, C(e^y-1) = e^(x+y).
(2) y' + ytanx = cosx
y = e^(-∫tanxdx) [∫cosxe^(∫tanxdx)dx + C]
= e^ln|cosx| {∫cosxe^[-ln|cosx|]dx + C}
= cosx (∫dx + C) = (x+C)cosx
(3) x ≠ 0 时, y'-y/x = x
y = e^(∫dx/x) [∫xe^(-∫dx/x)dx + C]
= x (∫dx + C) = x(x+C)
x = 0 时, y = 0. 也可用上式表示。