求解下列线性方程组 求详细的解答

2025-06-27 16:43:25
推荐回答(1个)
回答1:

增广矩阵
(A,
b)
=
[1
1
1
1
1
7]
[3
2
1
1
-3
-2]
[0
1
2
0
6
23]
[5
4
-3
3
-1
12]
初等行变换为
[1
1
1
1
1
7]
[0
-1
-2
-2
-6
-23]
[0
1
2
0
6
23]
[0
-1
-8
-2
-6
-23]
初等行变换为
[1
0
-1
-1
-5
-16]
[0
1
2
2
6
23]
[0
0
0
-2
0
0]
[0
0
-6
0
0
0]
初等行变换为
[1
0
0
0
-5
-16]
[0
1
0
0
6
23]
[0
0
1
0
0
0]
[0
0
0
1
0
0]
r(A,
b)
=
r(A)
=
4
<
5,
方程组有无穷多解。
方程组化为
x1
=
-16
+
5x5
x2
=
23
-
6x5
x3
=
0
x4
=
0

x5
=
0,
得特解
(-16,
23,
0,
0,
0)^T;
导出租是
x1
=
5x5
x2
=
-6x5
x3
=
0
x4
=
0

x5
=
1
得基础解系
(5,
-6,
0,
0,
1)^T,
方程组通解是
x
=
(-16,
23,
0,
0,
0)^T
+
k
(5,
-6,
0,
0,
1)^T