等差数列{an}的各项均为正数,a1=3,前n项和为Sn,数列{bn}为等比数列,b1=2,且b2S2=32,b3S3=120.(1

2025-06-27 20:58:50
推荐回答(1个)
回答1:

(1)设{an}的公差为d,{bn}的公比为q,则d为正整数,
∴an=3+(n-1)d,bn=2qn?1
依题意,得

S3b3=(9+3d)?2q2=120
S2b2=(6+d2q=32

解得d=2,q=2,或d=-
6
5
,q=
10
3
(不合题意,舍)
故an=3+2(n-1)=2n+1,bn=2n
(2)∵Sn=3+5+…+(2n+1)=n(n+2),
1
Sn
=
1
n(n+2)
=
1
2
1
n
?
1
n+2
),
∴Tn=
1
2
(1-
1
3
+
1
2
?
1
4
+
1
3
?
1
5
+…+
1
n
?
1
n+2

=
1
2
(1+
1
2
?
1
n+1
?
1
n+2
)

=
3n2+5
4(n+1)(n+2)