(1)设{an}的公差为d,{bn}的公比为q,则d为正整数,
∴an=3+(n-1)d,bn=2qn?1,
依题意,得
,
S3b3=(9+3d)?2q2=120
S2b2=(6+d2q=32
解得d=2,q=2,或d=-
,q=6 5
(不合题意,舍)10 3
故an=3+2(n-1)=2n+1,bn=2n.
(2)∵Sn=3+5+…+(2n+1)=n(n+2),
∴
=1 Sn
=1 n(n+2)
(1 2
?1 n
),1 n+2
∴Tn=
(1-1 2
+1 3
?1 2
+1 4
?1 3
+…+1 5
?1 n
)1 n+2
=
(1+1 2
?1 2
?1 n+1
)1 n+2
=
.3n2+5 4(n+1)(n+2)