已知关于x的一元二次方程ax^2+x-a=0(a≠0)

2025-06-26 23:08:25
推荐回答(3个)
回答1:

由韦达定理得
x1+x2=-1/a,x1*x2=-1
因此 (x1+x2)^2=1/(a^2)
所以 x1^2+x2^2=1/(a^2)+2
又因为|x1|+|x2|=4
故(|x1|+|x2|)^2=16
(ㄧx1ㄧ)^2+2ㄧx1ㄧ*ㄧx2ㄧ+(ㄧx2ㄧ)^2=16
因此 x1^2+x2^2+2=16
所以 x1^2+x2^2=14
1/(a^2)+2=14

1/(a^2)=12
a^2=1/12
a=±√(1/12)=±√3/6

回答2:

确实用韦达定理解 X1+X2= -b/a X1*X2=c/a

所以原方程 两根之和为负a分之一,之积为-1。所以x1正x2负
所以x1-x2=4,与x1x2=-1联立,得一方程:x^2-4x+1=0
再根据韦达定理,两根之和=4 所以a=-1/4

回答3:

哦 根据伟达定理,两根之和为负a分之一,之积为-1,两根一正一负。X1大于X2,所以X1为正!所以X1—X2=4 然后联立方程!