∵四边形的内角和为360°,∴∠A+∠B=360°-(∠C+∠D)=360°-α°,又∵OA,OB分别是两角的角平分线,∴∠OAB+∠OBA= 1 2 (∠A+∠B)= 1 2 (360°-α°)=180°- 1 2 α,∴∠O=180°-(∠OAB+∠OBA)=180°-(180°- 1 2 α)= 1 2 α.